Lower Bounds of the Dirac Eigenvalues on Compact Riemannian Spin Manifolds with Locally Product Structure
نویسنده
چکیده
We study some similarities between almost product Riemannian structures and almost Hermitian structures. Inspired by the similarities, we prove lower eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds with locally product structures. We also provide some examples (limiting manifolds) for the limiting case of the estimates. MSC(2000): 53C25, 53C27, 58B20
منابع مشابه
Eigenvalues of the Dirac Operator on Manifolds with Boundary
Under standard local boundary conditions or certain global APS boundary conditions, we get lower bounds for the eigenvalues of the Dirac operator on compact spin manifolds with boundary. For the local boundary conditions, limiting cases are characterized by the existence of real Killing spinors and the minimality of the boundary.
متن کاملEigenvalue Estimates for Dirac Operator with the Generalized Aps Boundary Condition
Under two boundary conditions: the generalized Atiyah-Patodi-Singer boundary condition and the modified generalized Atiyah-Patodi-Singer boundary condition, we get the lower bounds for the eigenvalues of the fundamental Dirac operator on compact spin manifolds with nonempty boundary.
متن کاملar X iv : d g - ga / 9 70 70 17 v 1 2 4 Ju l 1 99 7 SCALAR CURVATURE RIGIDITY FOR ASYMPTOTICALLY LOCALLY HYPERBOLIC MANIFOLDS
Rigidity results for asymptotically locally hyperbolic manifolds with lower bounds on scalar curvature are proved using spinor methods related to the Witten proof of the positive mass theorem. The argument is based on a study of the Dirac operator defined with respect to the Killing connection. The existence of asymptotic Killing spinors is related to the spin structure on the end. The expressi...
متن کاملSpectral estimates on 2-tori
We prove upper and lower bounds for the eigenvalues of the Dirac operator and the Laplace operator on 2-dimensional tori. In particluar we give a lower bound for the first eigenvalue of the Dirac operator for non-trivial spin structures. It is the only explicit estimate for eigenvalues of the Dirac operator known so far that uses information about the spin structure. As a corollary we obtain lo...
متن کاملDirac Eigenvalues for Generic Metrics on Three-manifolds
We show that for generic Riemannian metrics on a closed spin manifold of dimension three the Dirac operator has only simple eigenvalues.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004