Lower Bounds of the Dirac Eigenvalues on Compact Riemannian Spin Manifolds with Locally Product Structure

نویسنده

  • Eui Chul Kim
چکیده

We study some similarities between almost product Riemannian structures and almost Hermitian structures. Inspired by the similarities, we prove lower eigenvalue estimates for the Dirac operator on compact Riemannian spin manifolds with locally product structures. We also provide some examples (limiting manifolds) for the limiting case of the estimates. MSC(2000): 53C25, 53C27, 58B20

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalues of the Dirac Operator on Manifolds with Boundary

Under standard local boundary conditions or certain global APS boundary conditions, we get lower bounds for the eigenvalues of the Dirac operator on compact spin manifolds with boundary. For the local boundary conditions, limiting cases are characterized by the existence of real Killing spinors and the minimality of the boundary.

متن کامل

Eigenvalue Estimates for Dirac Operator with the Generalized Aps Boundary Condition

Under two boundary conditions: the generalized Atiyah-Patodi-Singer boundary condition and the modified generalized Atiyah-Patodi-Singer boundary condition, we get the lower bounds for the eigenvalues of the fundamental Dirac operator on compact spin manifolds with nonempty boundary.

متن کامل

ar X iv : d g - ga / 9 70 70 17 v 1 2 4 Ju l 1 99 7 SCALAR CURVATURE RIGIDITY FOR ASYMPTOTICALLY LOCALLY HYPERBOLIC MANIFOLDS

Rigidity results for asymptotically locally hyperbolic manifolds with lower bounds on scalar curvature are proved using spinor methods related to the Witten proof of the positive mass theorem. The argument is based on a study of the Dirac operator defined with respect to the Killing connection. The existence of asymptotic Killing spinors is related to the spin structure on the end. The expressi...

متن کامل

Spectral estimates on 2-tori

We prove upper and lower bounds for the eigenvalues of the Dirac operator and the Laplace operator on 2-dimensional tori. In particluar we give a lower bound for the first eigenvalue of the Dirac operator for non-trivial spin structures. It is the only explicit estimate for eigenvalues of the Dirac operator known so far that uses information about the spin structure. As a corollary we obtain lo...

متن کامل

Dirac Eigenvalues for Generic Metrics on Three-manifolds

We show that for generic Riemannian metrics on a closed spin manifold of dimension three the Dirac operator has only simple eigenvalues.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004